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Abstract

Purpose – The purpose of this paper is to suggest a new approach to the numerical simulation of
shallow-water flows both in plane domains and on the sphere.
Design/methodology/approach – The approach involves the technique of splitting of the model
operator by geometric coordinates and by physical processes. Specially chosen temporal and spatial
approximations result in one-dimensional finite difference schemes that conserve the mass and the total energy.
Therefore, the mass and the total energy of the whole two-dimensional split scheme are kept constant too.
Findings – Explicit expressions for the schemes of arbitrary approximation orders in space are given. The
schemes are shown to be mass- and energy-conserving, and hence absolutely stable because the square root of
the total energy is the norm of the solution. The schemes of the first four approximation orders are then tested
by simulating nonlinear solitary waves generated by a model topography. In the analysis, the primary
attention is given to the study of the time-space structure of the numerical solutions.
Originality/value – The approach can be used for the numerical simulation of shallow-water flows in
domains of both Cartesian and spherical geometries, providing the solution adequate from the physical
and mathematical standpoints in the sense of keeping its mass and total energy constant even when
fully discrete shallow-water models are applied.
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1. Introduction
Consider the shallow-water equations (SWEs) written in the divergent form (Samarskii
and Popov, 1969; Shokin, 1988; Skiba, 1995):
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Here z :¼
ffiffiffiffi
H
p

;U :¼ zu and V :¼ zv; ðuðx; y; tÞ; vðx; y; tÞÞT is the fluid’s velocity field,
H ¼ Hðx; y; tÞ is the fluid’s depth (or, in meteorological problems, the atmospheric
column’s height), f ¼ f ð yÞ is the Coriolis acceleration, h ¼ hðx; y; tÞ is the free surface
height and hr ¼ h� H is the underlying relief’s height. We consider the problem
subject to appropriate initial conditions and the periodic boundary conditions in x and
y in a doubly periodic domain D.

System (1)-(3) possesses the mass, energy and potential enstrophy conservation
laws (Pedlosky, 1982; Vreugdenhil, 1994):
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which establish specific limitations on the shallow-water equations (SWM) solution, or,
in other words, on the motion of the fluid. However, in a fully discrete (i.e. discrete both
in space and in time) SWMs the total energy and the potential enstrophy usually stop
being invariant (Vreugdenhil, 1994). This leads to the numerical instability and the
false energy distribution over the spectrum of movements of different scales (Morton
and Mayers, 1994), and as a consequence, the numerical results, especially at long-term
calculations, can be far from the exact ones in some norms (note that the square root of
the total energy is the most natural norm for the SWM). In order to reduce the
approximation errors and eliminate numerical instability, conservative schemes have
to be employed (Samarskii and Popov, 1969; Shokin, 1988). Moreover, for obtaining
physically reliable numerical results and avoiding numerical instability effects finite
difference schemes should conserve as many shallow-water invariants of motion as
possible (Williamson, 1979).

In the last three decades there have been developed several approaches for
constructing semidiscrete (discrete in space, but continuous in time) models that
conserve some or other invariants of motion of the SWEs. However, all such models
stop being conservative when the time derivatives are discretised by using an explicit
approximation (Arakawa and Lamb, 1981; Kim, 1984; Ringler and Randall, 2002;
Sadourny, 1975; Salmon, 2004; Takano and Wurtele, 1982). Yet, even if the Crank-
Nicolson approximation is used to keep the scheme conservative, the existing methods
possess certain disadvantages. This is especially true for high-order schemes where
either complicated spatial grids are utilised (Ringler and Randall, 2002) or rather
sophisticated finite difference stencils are employed (Salmon, 2004). Specifically, the
use of multipointed complex stencils or geodesic grids restricts the applicability of the
corresponding schemes. For instance, the scheme developed in Salmon, (2004), because
of the complexity of the spatial stencil, is applicable only in the Cartesian geometry
with periodic boundary conditions in both directions, and it cannot be used on a sphere
nor on the plane in nonperiodic bounded domains.

Recently a new approach to the numerical simulation of shallow-water flows has
been suggested both in plane domains (Skiba, 1995) and on the sphere (Skiba and
Filatov, 2007, 2008). The approach permits conserving the mass and the total energy of
the system when it is fully discretised, i.e. both in time and in space. Yet, it provides
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substantial benefits in the computational cost of solution and, as applied to a doubly
periodic manifold, allows to construct conservative finite difference schemes of
arbitrary approximation orders in space. Moreover, if the SWM is considered on the
entire sphere (which is not a doubly periodic manifold) then the method permits to
use the same numerical algorithms as for a doubly periodic region. Thereby, for the
spherical SWM conservative arbitrary order finite differences. Schemes can also be
constructed. The approach involves the technique of splitting of the model operator by
geometric coordinates and by physical processes (Marchuk, 1982; Skiba, 1995).
Specially chosen temporal and spatial approximations result in one-dimensional
schemes that conserve the mass and the total energy, and so the mass and the total
energy of the whole two-dimensional split scheme are kept constant too. In fact, an
infinite set of such schemes is suggested. The schemes are either linear or nonlinear
depending on the choice of certain parameters.

In this work conservative fully discrete splitting-based schemes for the shallow-
water flows on the whole sphere are considered in detail. We give explicit expressions
for the schemes of arbitrary approximation orders in space. The schemes are shown to
be mass- and energy-conserving, and hence are absolutely stable because the square
root of the total energy is the norm of the solution. The schemes of the first four
approximation orders are then tested by simulating nonlinear solitary waves generated
by a model topography.

The paper is organised as follows. In section 2 we begin from the demonstration of
benefits we gain having written the SWEs in the divergent form. There we also employ
the Crank-Nicolson approximation. Independently, in section 3 we use operator
splitting and introduce three simpler one-dimensional subproblem. Joining all together,
in section 4 we construct different order finite difference schemes for the SWM studied
on a doubly periodic manifold. We shall explicitly write the schemes of the first four
orders, as well as introduce a general formula for an arbitrary-order scheme. Section 5
extends the ‘‘planar’’ approach to the case of spherical geometry. In section 6 we test the
developed numerical method by simulating nonlinear soliton-like waves generated by
a model topography. The time-space structure of the solution is analysed in detail and
the temporal behaviour of the potential enstrophy is studied. In section 7 we make a
concluding summary.

2. Divergent form of the SWEs and Crank-Nicolson approximation
The form of system (1)-(3) is called ‘‘divergent’’ for the following reasons.

First, the sum of the last two terms of equation (3) represents the divergence of the
vector ðzU ; zVÞT. So, integration of (3) over D, given the periodic boundary conditions,
eliminates the divergent terms that yields the mass conservation law (4). Second,
equations (1)-(2) contain the terms @aB=@r þ að@B=@rÞ, where a ¼ fu; vg;B ¼ fU ;Vg
and r ¼ fx; yg, which, being multiplied by B, take the divergent form @aB2=@r. For
example, for the first equation we obtain @uU=@xþ uð@U=@xÞð Þ þ @vU=@yþ vð@U=ð½
@yÞÞ�U ¼ @uU2=@xþ @vU2=@y ¼ r � ðuU2; vU2ÞT � divðuU2; vU2ÞT. Integration
over the domain D, given the periodic boundary conditions, also eliminates the divergent
terms. Further, sum of the terms gzð@h=@rÞ and @zB=@r, multiplied by B and gh,
respectively, also takes the divergent form @gzBh=@r and thus vanishes when integrating
over D. This leads to the total (kinetic plus potential) energy conservation law (5).

The ‘‘divergence’’ property of system (1)-(3) is the crucial point. Specifically, it can be
shown that certain discrete approximations of the ‘‘divergent’’ terms, given the
periodicity of D in both directions, vanish when summing over all the grid nodes. For
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instance, taking the approximation:
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we easily obtain:

X
k;l

RklUkl ¼ � � � ¼ 0: ð8Þ

As to the Coriolis terms, the sum of the terms�fV and fU , being multiplied by U and V ,
respectively, simply disappears. Consequently, the problem of construction of mass- and
energy-conserving finite difference schemes reduces to the search for such appropriate
approximations of the divergent terms of (1)-(3) that the operator of the corresponding
discrete SWM would be antisymmetric, as the original SWM operator is.

The only temporal approximation that keeps antisymmetricity for a finite difference
operator is the Crank-Nicolson scheme. Indeed, consider the differential problem:
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~��jt¼0 ¼~ggðxÞ ð10Þ

with an antisymmetric operator L, and a family of finite difference schemes:
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~�� 0 ¼~ggðxÞ: ð12Þ

The antisymmetry means that:

hL~��;~��i ¼ 0 8~�� 6¼ 0;

where h�; �i is a scalar product. Multiplying (11) by �~�� n þ ð1� �Þ~�� nþ1 and integrating,
we obtain:

1

�
~�� nþ1 �~�� n; �~�� n þ ð1� �Þ~�� nþ1
� �

¼ 0;

and hence the norm of the solution keeps constant only when � ¼ 1
2, which corresponds

to the Crank-Nicolson approximation (Marchuk, 1982; Yanenko, 1971).
These properties of the divergent form of system (1)-(3) will essentially be used in

section 4 for the construction of conservative finite difference schemes.

3. Operator splitting
In each small time interval we split system (1)-(3) into three simpler subproblems. First,
fixing the coordinate y, in the direction x we get:
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Second, fixing x, in the direction y we obtain:
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Finally, for the rotation process we write:

@U

@t
� fV ¼ 0; ð19Þ

@V

@t
þ fU ¼ 0: ð20Þ

Equations (13)-(15) and (16)-(18) represent one-dimensional PDE systems, while
equations (19)-(20) form a system of ordinary differential equations. Note that each split
system conserves the mass and the total energy.

It is important to remark that for an arbitrary boundary value problem one has to be
careful while using the method of splitting. The crucial point here is the splitting of
boundary conditions, because the latter must be split in such a way that (1) all the split
subproblems be well-posed and (2) in each small time interval, the solution obtained
after resolving all the split subproblems converge to the solution to the original unsplit
problem. Several examples on this topic can be found in D’yakonov (1964, 1972).
However, since we consider problem (1)-(3) in a doubly periodic domain, both of these
requirements are satisfied (Marchuk, 1982).

4. Conservative finite difference schemes
Taking into account the results of sections 2 and 3, we shall now approximate each split
system by the Crank-Nicolson scheme in time. On the other hand, since the only restriction
on spatial approximations is that the resulting ‘‘divergent’’ terms must disappear while
summing over all the grid nodes, different order finite difference stencils can be involved
for constructing arbitrary order conservative schemes in space. Yet, the functions u, v and z
can be approximated in an absolutely arbitrary manner, which will allow to develop useful
filters for reducing computational modes in the numerical solution in case of using central
spatial finite differences stencils (Skiba and Filatov, 2007, 2008).
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So, let: � ¼ tnþ1 � tn;�x ¼ xkþ1 � xk;�y ¼ ylþ1� yl ; fl ¼ f ðylÞ;Wn
kl ¼Wðxk; yl ; tnÞ

and

Wkl ¼
Wnþ1

kl þWn
kl

2
; ð21Þ

where the symbol W represents any of the functions u, v, H, h, U, V, z.

First-order schemes. Consider a small time interval ðtn; tnþ1Þ. We discretise (13)-(15) in the

form (the index l in the y-direction is omitted in order not to complicate the formulas):
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Here we used the first-order approximation @uB=@xþ uð@B=@xÞ � ukBk�
uk�1Bk�1=�xþ ukðBkþ1 � Bk=�xÞ ¼ ukBkþ1 � uk�1Bk�1=�x. Another first-order

scheme can be obtained if @uB=@xþ uð@B=@xÞ � ukþ1Bkþ1 � ukBk=�xþ ukðBk�
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Second-order scheme. If we employ the central second-order finite difference stencil

then we shall have the scheme:

Unþ1
k � Un

k

�
þ 1

2

ukþ1Ukþ1 � uk�1Uk�1

2�x
þ uk

Ukþ1 � Uk�1

2�x

� �

¼ �gzk

hkþ1 � hk�1

2�x

ð28Þ



HFF
19,8

988

V nþ1
k � V n

k

�
þ 1

2

ukþ1Vkþ1 � uk�1Vk�1

2�x
þ uk

Vkþ1 � Vk�1

2�x

� �
¼ 0; ð29Þ

Hnþ1
k � Hn

k

�
þ zkþ1Ukþ1 � zk�1Uk�1

2�x
¼ 0: ð30Þ

Third-order schemes. Increasing the approximation order to three, we can write either:
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which will provide either with:
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respectively.

Fourth-order scheme. With the central fourth-order stencil we shall obtain the scheme:
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and so on.

Arbitrary-order schemes Generally, an arbitrary p-order noncentral finite difference

scheme can be obtained either with (backward-forward approximation):
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or with (forward-backward approximation):
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An arbitrary q-even-order central finite difference scheme comes from:
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The coefficients fcig and fĉcig determine the corresponding finite difference stencils
and can be found e.g. in Korn and Korn (1968). For example, for scheme (28) we have
q ¼ 2 and ĉckþ1 ¼ �ĉck�1 ¼ 1

2, ĉck ¼ 0.
Similarly one can write down arbitrary-order finite difference schemes in the

y-direction (subproblem (16)-(18)).
As to the rotational process (equations (19)-(20)), we have:

Unþ1
kl � Un

kl

�
� flVkl ¼ 0; ð51Þ

V nþ1
kl � V n

kl

�
þ flUkl ¼ 0: ð52Þ

Since we discretised the spatial derivatives @fU ;V ; hg=@fx; yg using (21) and because
all the split difference operators are antisymmetric, each of the developed schemes
conserves the mass and total energy. As a result, the mass and total energy of the whole
discrete model (consisting of the three split models) are conserved too.

It is important that all the schemes coming from (42)-(44), (45)-(47) or (48)-(50) can be
resolved by a direct (i.e. non-iterative) method, and therefore the conservation laws are
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not violated. Indeed, consider, for example, equation (22). For its right-hand side, taking
into account (21), we can write �gzkðhkþ1 � hk=�xÞ ¼ �gzkðhnþ1

kþ1 þ hn
kþ1 � hnþ1

k �
hn

kÞ=2�x, and hence, expressing from (24) the function Hnþ1
k and then substituting

hnþ1
k ¼ Hnþ1

k þ hrk into (22), we shall obtain:
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�
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4�x
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4�x2
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S1ðnÞ; P4 ¼ �

gzk

2�x

�
2ðhn

kþ1 � hn
kÞ �
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�
;
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n
kþ1 � uk�1U

n
k�1; S2ðnÞ ¼ zkþ1U

n
kþ1 � 2zkU

n
k þ zk�1U

n
k�1:

Therefore, if we define:

ukl ¼ un
kl ; vkl ¼ vn

kl ; zkl ¼ zn
kl ; ð54Þ

then scheme (53), (23)-(24) can be solved by a direct linear algebra method. Of course, if (54)
holds then all the other schemes in x and in y also reduce to systems of linear algebraic
equations. Moreover, due to the use of splitting all these systems will have M-diagonal
matrices, and thus band linear solvers can be employed for their solution (Press et al., 1992).

Scheme (51)-(52) is independent of the choice of the functions ukl , vkl and zkl , and
hence it can be transformed to the form:

Unþ1
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1� �2

4 f 2
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n
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4 f 2
l

; ð55Þ
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1� �2

4 f 2
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Vn

kl � �flU
n
kl

1þ �2

4 f 2
l

: ð56Þ

As we noted in section 3, the functions ukl ; vkl and zkl can be defined in an arbitrary way.
So, apart from (54) we can write:

wkl ¼
X

i;j

�
ðwÞ
kþi;lþjw

n
kþi;lþj; w ¼ fu; v; zg; ð57Þ

where �
ðwÞ
kþi;lþj are weight coefficients for u, v and z, while i, j vary in some ranges over

neighbouring nodes. Such approximations may be useful for reducing computational
modes of the solutions if one employs an even-order central finite difference scheme.
Another possible choice could be ukl ¼ ukl ; vkl ¼ vkl and zkl ¼ zkl . However, in this case
all the subsequent schemes in x and in y will be nonlinear (Skiba, 1995; Skiba and
Filatov, 2007) and an iterative procedure must be used for their solution, which will not
keep the invariants of motion constant.
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5. Shallow-water schemes on the sphere
The sphere is a very important geometric manifold for many meteorological applications
of the SWEs. A great advantage of the splitting-based approach is that it allows using
the developed ‘‘planar’’ algorithm for studying shallow-water flows on a rotating sphere.

Consider the SWEs in the spherical coordinates ð�; ’Þ:

@U

@t
þ 1

R cos’

1

2

@uU

@�
þ u

@U

@�

� �
þ 1

2

@vU cos’

@’
þ v cos’

@U

@’

� �� �

� f þ u

R
tan’

	 

V ¼ � gz

R cos’

@h

@�
;

ð58Þ

@V

@t
þ 1

R cos’

1

2

@uV

@�
þ u

@V

@�

� �
þ 1

2

@vV cos’

@’
þ v cos’

@V

@’

� �� �

þ f þ u

R
tan’

	 

U ¼ � gz

R

@h

@’
;

ð59Þ

@H

@t
þ 1

R cos’

@zU

@�
þ @zV cos’

@’

� �
¼ 0: ð60Þ

Here � is the longitude (positive eastward), ’ is the latitude (positive northward), R is
the sphere’s radius, f ¼ 2� sin’ and � is the angular rotation rate. Problem (58)-(60) is
being studied on the sphere S.

The grid on the sphere is taken as follows:

S��;�’ ¼ ð�k; ’lÞ : ��
2 � �k < 2�þ ��

2 ;� �
2 þ

�’
2 � ’l � �

2 �
�’

2

n o
: ð61Þ

Note that in (61) we moved the grid to a half step in the direction ’:

f’lgL�1=2
1=2 ¼ f� �

2 þ
�’

2 þ l�’; l ¼ 0;L� 1g, because due to the metric term 1=R cos’

equations (58)-(60) are not valid in the poles. Therefore we do cover the whole sphere,
and at the same time do not have to find the solution at the pole nodes (Williamson,
1979). This grid is used for computing the solution in the ��direction (Figure 1).

The point of using the operator splitting in the spherical geometry is that although the
sphere is evidently not a doubly periodic manifold, our algorithm developed for a doubly
periodic domain can be applied to the sphere too. Indeed, for computing the solution in the
’�direction we can represent the same grid in the other manner (Figure 2):

S��;�’ ¼ ð�k; ’lÞ : ��
2 � �k � �� ��

2 ;
�’

2 � ’l < 2�þ �’
2

n o
: ð62Þ

One can see that the grid covering (62) has the same nodes as in (61). Thus, after
making slight modifications in (42)-(44), (45)-(47) and (48)-(50) (in fact, merely the metric
term 1=R cos’ has to be added, as well) those formulas can be applied for constructing
conservative finite difference schemes for system (58)-(60). For instance, the second-
order finite difference scheme in the direction � has the form:
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Unþ1
k � Un

k

�
þ 1

2cl

ukþ1Ukþ1 � uk�1Uk�1

2��
þ uk

Ukþ1 � Uk�1

2��

� �

¼ � gzk

cl

hkþ1 � hk�1

2��
;

ð63Þ

Figure 1.
The first coordinate map

(dash-dot lines) and the
corresponding grid

covering (solid lines) for
the sphere S

Figure 2.
The second coordinate

map (dash-dot lines) and
the corresponding grid

covering (solid lines) for
the sphere S
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V nþ1
k � V n

k

�
þ 1

2cl

ukþ1Vkþ1 � uk�1Vk�1

2��
þ uk

Vkþ1 � Vk�1

2��

� �
¼ 0; ð64Þ

Hnþ1
k � Hn

k

�
þ 1

cl

zkþ1Ukþ1 � zk�1Uk�1

2��
¼ 0; ð65Þ

while in the direction ’we shall get:

Unþ1
l � Un

l

�
þ 1

2cl

vlþ1Ulþ1 cos’lþ1 � vl�1Ul�1 cos’l�1

2�’

�

þ vl cos’l
Ulþ1 � Ul�1

2�’

�
¼ 0; ð66Þ

V nþ1
l � V n

l

�
þ 1

2cl

vlþ1Vlþ1 cos’lþ1 � vl�1Vl�1 cos’l�1

2�’

�

þvl cos’l

Vlþ1 � Vl�1

2�’

�
¼ � gzl

R

hlþ1 � hl�1

2�’
; ð67Þ

Hnþ1
l � Hn

l

�
þ 1

cl

zlþ1Vlþ1 cos’lþ1 � zl�1Vl�1 cos’l�1

2�’
¼ 0: ð68Þ

Here cl ¼ R cos’l . Analogously, schemes of other orders can easily be written. The
rotation subproblem is:

Unþ1
kl � Un

kl

�
�
�

fl þ
ukl

R
tan’l

�
Vkl ¼ 0; ð69Þ

V nþ1
kl � V n

kl

�
þ
�

fl þ
ukl

R
tan’l

�
Ukl ¼ 0; ð70Þ

and formulas similar to (61)-(62) can easily be obtained.
It is noteworthy that the use of two different maps (61)-(62) is possible exclusively

due to the splitting. Thereby, if (54) holds, we keep the simple M-diagonal structure of
the matrices, and hence the solution appears to be cheap from the computational
standpoint. In this connection we emphasise that if one solves the complete 2D shallow-
water system without splitting then the problem of complicating the matrix structure
evidently arises.

6. Numerical results
Now we shall illustrate how the developed method works, simulating the behaviour of
nonlinear soliton-like waves generated by a model topography. The schemes of the first
four approximation orders in space will be tested. Because each finite difference scheme
exactly conserves the mass and the total energy, but not the potential enstrophy,
temporary behaviour of the latter is considered as an important integral characteristic of
the schemes’ quality in all the experiments. Besides, spatial structure of the solution at
different time moments will be analysed in detail.
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We took a simple set of the initial conditions Hð�; ’; 0Þ ¼ 3,000 m, uð�; ’; 0Þ ¼ 0,
vð�; ’; 0Þ ¼ 0, and introduced a relief given by two mountains, whose heights did not
exceed 1,000 m (Figure 3). The larger mountain covers the area from �50� to þ50�

meridionally, locating at 250�-280� eastwards, which roughly corresponds to the
American Cordillera including the mountains of North, Central and South America.
The smaller mountain is located near 30�-50� northwards and 80�-100� eastwards
simulating the Himalaya. Note that we did not keep the height ratio between the real
mountains and the model ones. The grid spacings ��, �’ and � were chosen such that
the finite difference schemes were accurate and the matrices corresponding to each
split system were diagonally dominant. The schemes were tested on the sequence of
grids 12� 	 12�, 6� 	 6�, 3� 	 3� and 1:5� 	 1:5�.

It is well-known that a numerical solution to the SWM obtained with a finite
difference scheme of an odd approximation order in space contains either physical
or computational modes. This depends on whether the advective terms are
approximated correctly from the physical standpoint. On the other hand, schemes
of even approximation orders simultaneously generate both physical and
computational modes (Press et al., 1992). To verify these facts, in Table I we

Figure 3.
Relief used in the

numerical experiments

Table I.
Maximum variation (in

per cent) of the potential
enstrophy for schemes

of different
approximation orders

Grid 1st 2nd 1st-2nd 3th 4th 3rd-4th

12� 	 12� 1.129 0.396 0.326 1.091 0.212 0.151
6� 	 6� 1.661 0.130 0.102 1.287 0.102 0.081
3� 	 3� >10 0.047 0.041 >10 0.051 0.046
1.5� 	 1.5� >10 0.039 0.030 >10 0.046 0.038
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summarise the maximum variation of the potential enstrophy obtained with
the SWM schemes of the first four orders. So, in accordance with the theory,
the purely odd-order schemes provided physically unreliable solutions, just
because neither up-wind-like nor down-wind-like schemes are suitable for
simulating such a complicated flow. The corresponding results are shown in Table
I in the columns ‘‘1st’’ and ‘‘3rd’’. Unlike that, the even-order schemes approximated
the solution in a suitable manner and provided reliable results: maximum variation
of the potential enstrophy gets down while refining the grid (columns ‘‘2nd’’ and
‘‘4th’’ of the table).

In order to reduce the effect of computational modes generated by even-order
schemes, we used ‘conditional’ computing. Namely, when computing in the direction �,
at each fixed ’l we employed an odd-order up-wind scheme if all the uk’s were positive,
an odd-order down-wind scheme if all the uk’s were negative, or the even-order scheme
if there were the uk’s of both signs. Similarly we did in the direction ’ checking each
time the signs of the vl ’s. Therefore we slightly improved the solution (compare
columns ‘‘1st’’-‘‘2nd’’ vs ‘‘2nd’’ and ‘‘3rd’’-‘‘4th’’ vs ‘‘4th’’, respectively). Because of
complexity of the flow the odd-order schemes were applied rather seldom, and so the
improvement was not substantial. However, the more the directional is the flow, the
more the essential accuracy improvement can be achieved while using odd-order
schemes (Skiba and Filatov, 2007, 2008).

In Figure 4 we plot graphs of the potential enstrophy in time. As one may see, the
variations are within narrow bands and very small – the quantity 	JðtÞ � max JðtÞ
�min JðtÞ=min JðtÞ � 100 per cent does not exceed 0.05 per cent on fine (3�	 3� or better)
grids (Table I).

We found out that the taken initial conditions generate a stable �-periodic soliton-
like solution ~�� ¼ ðu; v;HÞT, whose depth field has two observable peaks. In Figure 5
we show the function Hð�; ’; tÞ for several time moments. It can be seen that just in
the beginning the larger mountain (‘‘Cordillera’’) generates two solitary peaks (located
at � � 210� � 220� and � � 300� � 310�, respectively) propagating eastwards and
westwards (t ¼ 0:2). Because the first peak (travelling to the east) goes to the same
direction that the sphere rotates, it keeps its form and magnitude almost unchanged
during all the time of modelling. Unlike, the second peak propagates to the opposite
direction, and all obstacles and waves it meets perturb its shape substantially. This is
observed especially clear in Figure 6: one can see a strong local zonal flow (located at
� ¼ 290� � 320� at t ¼ 0:2, and so on) that transports the first peak and a turbulent
convergent divergent vortex (well observed at � ¼ 220� � 250� at t ¼ 0:2) which
moves the second, weake peak. Note that the ‘‘Himalaya’’ mountain also produces wave
solutions, which, however, have much smaller amplitudes compared to those generated
by the larger mountain (nicely observed at t ¼ 0:2).

From t ¼ 1:1 to t ¼ 1:5 we observe an interaction of the two peaks at
� � 100� � 110�. Again, the first peak remains almost unperturbed, whereas the
second one changes its shape and loses in the amplitude (Figure 5, t ¼ 1:5). In Figure 6
the same peaks interaction is shown as it is modelled by the velocity field.

In Figures 7 and 8 we show the propagation of the peaks over the ‘‘Cordillera’’
mountain. What is interesting here is that we can observe two different manners of
propagation of the solitary waves over an obstacle. Indeed, the stronger peak goes over
the ‘Cordillera’ without considerable changes both in the depth and velocity fields
(Figures 7 and 8, t ¼ 2:0� 2:4). On the other hand, the weaker solitary wave, being
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Figure 4.
Behaviour of the potential

enstrophy J(t) in time on
the grid 3� 	 3�,

� ¼ 3:6 min, second-order
(top) and fourth-order

(bottom) schemes
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located at t ¼ 2:6 between the ‘‘Cordillera’’ and the stronger peak, changes its velocity
field essentially when passing the mountain at t ¼ 2:8 (Figure 8).

In Figures 9 and 10 we show the solution for further time moments. While
propagating, the peaks meet one another and interfere at t ¼ 3:7. After the nonlinear
interaction the waves continue propagating east- and westwards, which is clearer to
observe in Figure 10 than in Figure 9. Comparing the solutions at t ¼ 1:3 and t ¼ 3:7,
we find the full period of revolution over the sphere to be �T ¼ 3:7� 1:3 ¼ 2:4 days.
At the same time, the gravitational waves revolution is known to be
�Tgrav ¼ 2�R=

ffiffiffiffiffiffiffi
gH
p

� 40 � 106 m=171 m=s ¼ 2:7 days (Pedlosky, 1982; Vreugdenhil,
1994), and, following the theory of nonlinear waves propagation (Kundu, 1990), the
time �T should be a little bit greater than �Tgrav. The explanation for why �T
happened to be less than �Tgrav is the effect of nonlinear wave interaction. Indeed,
say, in Figure 5 we see that the stronger peak, when interacting with the weaker one,
passes from � � 80� (t ¼ 1:1) to � � 150� (t ¼ 1:5) for t ¼ 1:5� 1:1 ¼ 0:4 days.
Without the nonlinear interaction such a rapid translation would be impossible, since it
requires the solitary wave velocity to be close to 225 m/s. The same is observed in
Figure 7: here the stronger peak, due to the nonlinear interaction with the ‘Cordillera’

Figure 5.
Depth field
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mountain, passes from � � 230� (t ¼ 2) to � � 290� (t ¼ 2:4) for the same 0.4 days,
which translation would only be possible at the peak’s velocity about 193 m/s.

7. Conclusions
Conservative finite difference schemes of arbitrary approximation orders in space for
shallow-water flows on a rotating sphere have been suggested. An essential advantage
of the underlying method is that it produces fully discrete (both in time and in space)
shallow-water schemes that exactly conserve the mass and the total energy and whose
numerical implementation is computationally inexpensive.

Our approach is based on splitting of the SWM operator by coordinates and by
physical processes. As a result, the solution to the original system of 2D partial
differential equations reduces the solution to three simple problems containing either

Figure 6.
Velocity field
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1D partial differential equations or ordinary differential equations. In fact, an infinite
family of such conservative schemes is proposed, which are either linear or nonlinear
depending on the choice of certain parameters of the scheme.

On a doubly periodic manifold (for example, on a doubly periodic domain on the
plane, or on a 2D torus) the method allows constructing conservative finite difference
schemes of arbitrary approximation orders in space. Moreover, if the SWM is
considered on the whole sphere then the method allows using the same numerical
algorithms as for a doubly periodic manifold, providing with schemes of arbitrary
approximation orders in the spherical geometry. The numerical SWM algorithms
developed are computationally cheap, because each scheme is easily implemented by
using band methods of linear algebra.

Figure 6.
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The virtue of the finite difference schemes has been illustrated via the simulation
of nonlinear soliton-like waves generated by a model topography. The numerical
experiments included testing and comparison of the finite difference schemes of the
first four orders on grids of different resolutions. The primary attention was given
to the study of time–space structure of the numerical solutions. We stress that each
finite difference scheme exactly conserves the mass and the total energy, but not

Figure 7.
Depth field
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Figure 8.
Velocity field
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Figure 8.
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Figure 9.
Depth field

Figure 10.
Velocity field
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Figure 10.
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the potential enstrophy. Since the potential enstrophy is one of the basic invariants
of the shallow-water motion, temporary behaviour of the potential enstrophy was
considered as an important integral characteristic of the schemes’ quality in all the
experiments. The even-order schemes, taken alone or coupled with the ‘‘conditional’’
computing, proved to be good for modelling complicated flows; the odd-order
schemes should only be used for simulating strictly one-way streams, such as
zonal flows or similar.
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